#### Asphalt Binder Testing Protocol for Dynamic Shear Rheometer

Presentation by Dave Anderson

Mike Farrar (Alec Cookman) - WRI Gerry Reinke (Andrew Hanz) - MTE Sonia Sterna (Codrin Daranga) - PTSI Mike Anderson - TAI Cassie Castorena - NCSU Pavel Kriz - Imperial Oil Olli-Ville Laukkanen – Allto University

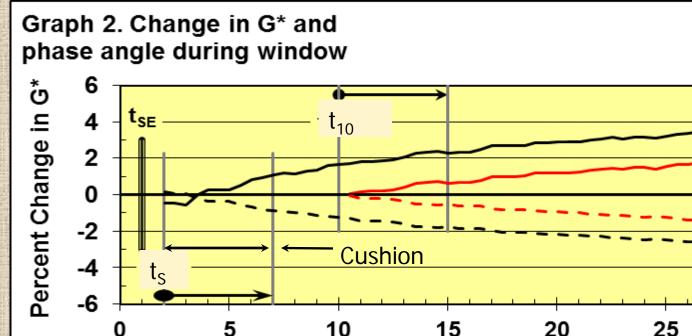
Asphalt Binder ETG September 15-16, 2015 Oklahoma City, OK

# Historical Observation– DSR Test Method

- Early on it was recognized that thermal gradients and thermal equilibrium can affect accuracy (lab bias)
  - Thermal gradients are currently accounted for with a dummy specimen and a temperature offset
- Thermal equilibrium is considered in the current AASHTO and ASTM test methods by a finite wait time (10 min)
  - No time limit is given for completion of data acquisition
- Test procedure is built around specification measurements at 10 rad/s based on early generation DSR's
  - Measurements at temperatures where G\* ranges from 100 Pa to 10 MPa

# Early ETG Task Group on Thermal Equilibrium

Initial concern was that 10 minute wait time was insufficient to obtain specimen thermal equilibrium


- Test method did not include procedure for determining specimen thermal equilibrium
- Based on extensive series of tests recommended:
  Change in G\*with time was recommended as the criterion
  Ten minute wait time is excessive
  - ✓ Wait time is instrument- specific
- Test window should include both a "start" and "stop" time
  Expect adoption in ASTM and AASHTO DSR test method

#### Specifying specimen equilibrium

Specimen equilibrium implies specimen mechanical properties are constant as long as can assume:

- ✓ DSR is at thermal equilibrium still may have gradients!
  - Transducer and motor properties unchanging
  - DSR components are stable
- ✓ Binder properties are not changing with time
  - Measure in linear range
  - Steric and physical hardening is minimal
- □ G\* is likely candidate to establish specimen equilibrium
  ✓ Proposal: Monitor changes in G\* with 30 min time sweep

#### Definition of terms



 $t_{TT}$  – time zero, DSR indicates target temperature  $\pm 0.1^{\circ}C$   $t_{SE}$  – time when specimen is at thermal equilibrium  $t_{C}$  – cushion between equilibrium and start time  $t_{S}$ ,  $t_{E}$  – time at start an end of test window  $t_{10}$  – 10 minute wait time as per AASHTO 315, ASTM 7125

Time, minutes

2.0

1.0

0.0

-1.0

-2.0

30

ю

Φ

Chang

ent

ěro,

Slide -5-

# Recommendation for determining 25 and 8 mm specimen equilibrium, t<sub>SE</sub>

Monitor G\* during 30 minute isothermal time sweep ✓ Determine G\* at 30 second intervals – 61 data points ✓ Calculate C<sub>SF</sub> – average <u>absolute</u> deviation for 5 data points as percent of the average of the 5 data points  $\checkmark$  Moving average, calculate for 61 - 4 = 59 data points ✓ Plot C<sub>SF</sub> vs time □ Thermal equilibrium time  $t_{SF}$  obtained when  $C_{SF} \le 1\%$ ✓ 1% must be maintained for remainder of 30 minutes Start time is time required for specimen thermal

equilibrium plus a cushion, t<sub>c</sub>

✓ Five minute test window starts at  $t_s = t_{se} + t_c$ 

Slide -6-

#### 4mm Plate - Historical

Pioneer work performed by Mike Farrar, WRI and Gerry Reinke, Mathy

 Currently being used by a number of researchers but without any standardization

Promising protocol with many applications

Facilitates implementation of revised aging protocols

✓ Useful for asphalt emulsion work and recovered binders

✓ Potential replacement for BBR

✓ Master curve generation at low temperatures

For all of the above applications revisions to AASHTO T315, ASTM D7125 will be necessary

#### 4mm Task Group Objectives

#### 4-mm is a different "ball game"

- FHWA Binder ETG Task Group established to provide guidance for the development of 4 mm geometry as a tool for purchase specification testing
- Focus of task is on test method development and standardization to facilitate implementation
- Future work beyond scope of task group must include
  - Ruggedness testing
  - Technology transfer to ramp up the learning curve
  - Recommendations for a round robin program
  - ✓ Extending findings to 8 mm

#### 1. 4-mm Issues - Verification

Verification of torque transducer with reference fluid ✓ Verifies overall operation, not the torque transducer alone ✓ Verification temperature independent ✓ Replacement not needed Verification of temperature transducer ✓ Current 25 mm diameter wafer unacceptable Need replacement - questionable for 8 mm ✓ Most critical issue ✓ Issue not resolved but some promising leads

#### 1. 4-mm Issues – Verification, cont'd

Verification of machine compliance

- ✓ Several procedures available (WRI, MTE, etc.)
- Two methods recommended by task force
  - Method A uses ice to bond top and bottom plates
  - Method B uses "crazy glue" to bond top and bottom plates
- Objective is to determine DSR response when plates are held rigid
- ASTM task force established to refine and validate equivalency of two methods
- Temperature and compliance critical verification steps

#### 2. 4-mm Issues - Specimen preparation

Two protocols have been developed: WRI and MTE

#### Primary differences

- ✓ Placement of test sample
  - WRI Hot place and heat gun
  - MTE Preform oversize specimen in silicone mold using torch

#### ✓ Bulge formation

- WRI at "soft" temperature
- MTE at "hard" temperature

Are they equivalent?

- ✓ Do they both give acceptable adhesion?
- ✓ Do they both accommodate physical hardening?
- ✓ Are specimen thermal equilibrium times similar?

#### **MTE Protocol**

Place sample on the end of warm spatula.

- Heat upper and lower plate with a small torch.
- Press specimen on the bottom plate so that it adheres to the bottom plate.
- □ Lower the upper plate so that it is embedded in the test specimen so gap is  $\approx$  3,000 µm, initial trim at  $\approx$  10°C.
- □ Reduce gap to  $\approx$  3,000 µm at  $\approx$ 1°C for final trimming
- □ Close to final gap at ≈1°C
- Bring to test temperature
- Note: Normal force is controlled during process of trimming and gap closure

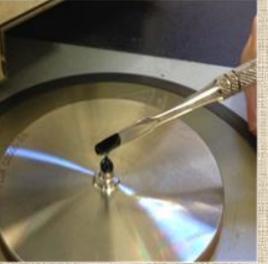
### MTE - Photographs







Slide -13-


### **WRI** Protocol

Using direct transfer of warm binder with spatula Annealed sample with spatula, no preform in silicone mold Heat sample on spatula with heat gun to transfer to lower plate ✓ Smear residue remaining on spatula on upper plate Loading and trim at 50°C - 60°C with 2 mm gap Closing Bulge at 30°C to 1.75 mm Cool to test temperature Automatic adjust gap to control normal forces ✓ Final gap will vary – calculate on actual gap

### WRI Photographs









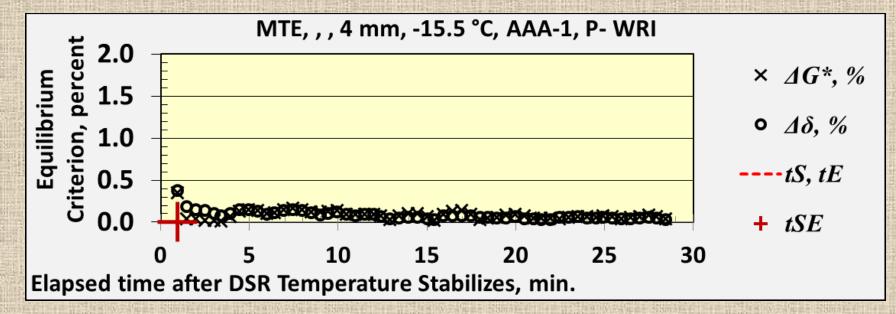


Slide -15-

#### 3. 4-mm Issues - Thermal Equilibrium

Is the procedure established for the 8 and 25 mm plate valid for low temperature measurements with the 4 mm plate?

✓ If the procedure is valid what are the criteria?

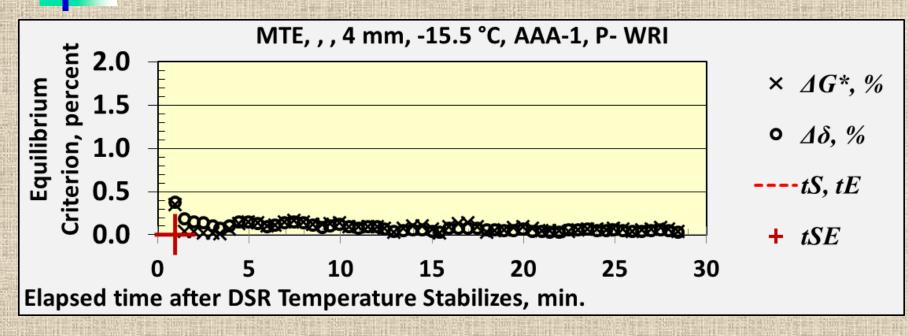

- ✓ Should there be a "start-end" testing window?
- Is physical hardening a factor in establishing thermal equilibrium?

### **Task Group Experiment**

Addresses <u>two</u> issues: Thermal equilibrium and specimen preparation

- ✓ Five laboratories representing three DSR manufacturers
- Two asphalt binders representing low and high degrees of physical hardening (AMRL AAA-1 and AAM-1)
- Two sample preparation protocols (MTE and WRI)
- Testing using thermal equilibrium protocol
- Binders PAV conditioned by TAI and sent in small tins to participants
- Returned data included complex modulus, phase angle, and normal force

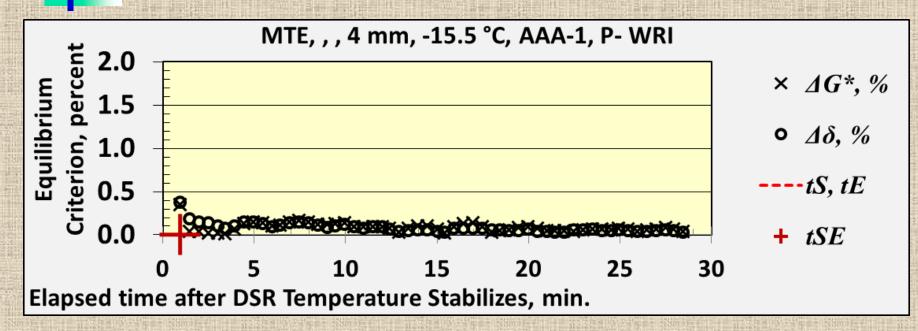
#### Typical Result – Criterion vs. Time




Specimen equilibrium is reached quickly

- More rapid than expected
- ✓ Attributable to small specimen size?
- As with 8 and 25 mm plate 10 minute wait excessive

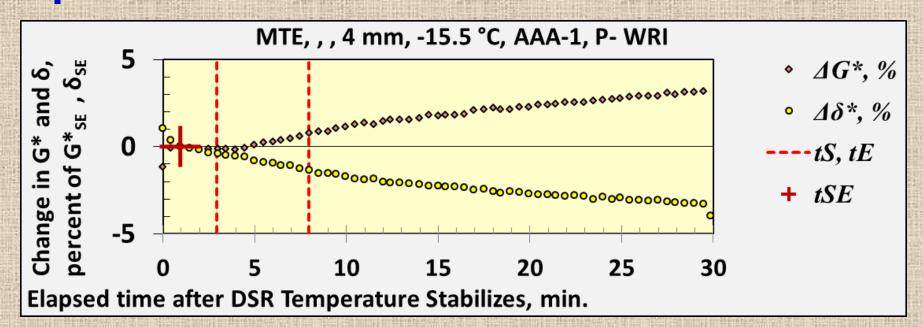
Slide -18-


#### G\* vs. δ as Criterion



- Give equivalent results
  - ✓ Phase angle tends to be less noisy
  - ✓ G\* used for 8 and 28 mm
  - ✓ Recommend G\* at 1% change

Slide -19-

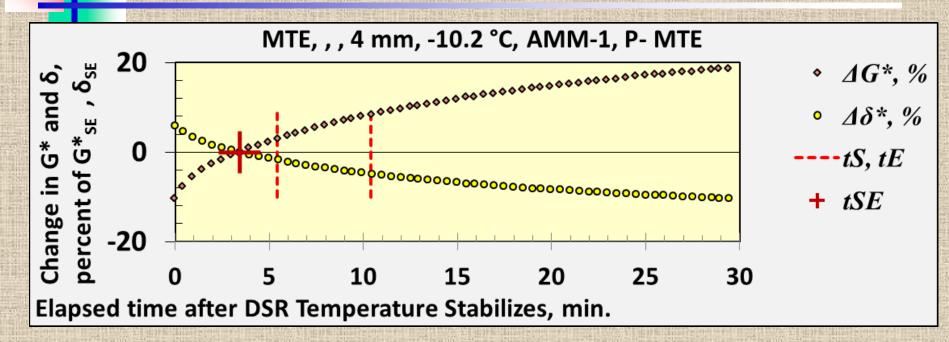

#### Typical Result - G\* vs. δ as Criterion



- Give equivalent results
  - ✓ Phase angle tends to be less noisy
  - ✓ G\* used for 8 and 28 mm
  - ✓ Recommend G\* at 1% change

Slide -20-

#### Percent Change in G\* and $\delta$ with time, AAA-1




Small change within test window

- ✓ Protocol appears to be acceptable
- Physical hardening minimal as expected with AAA-1

Slide -21-

#### Percent Change in G\* and $\delta$ with time, AAM-1



Larger change within test window

Physical hardening causes 20% change in 20 minutes
 Need to account for physical bordening in come mapping

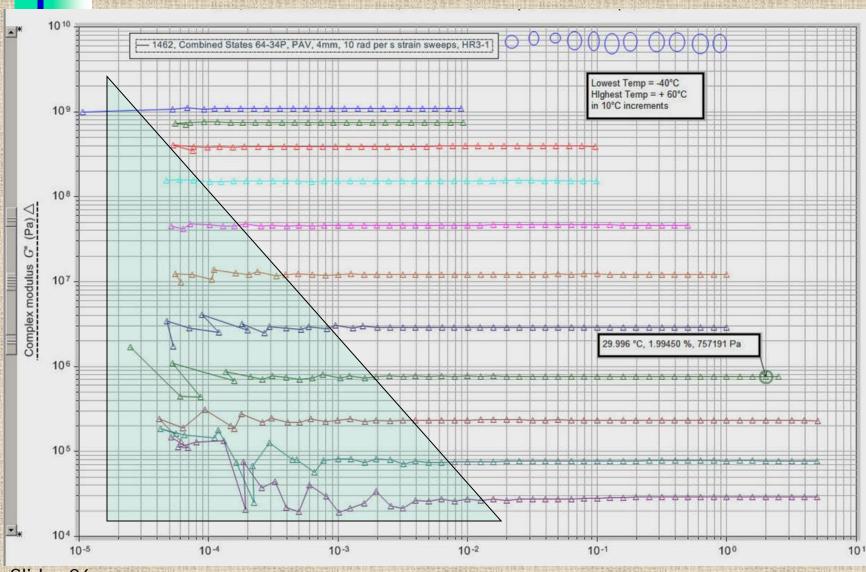
✓ Need to account for physical hardening in some manner

#### Summary

Two protocols appear to give similar results Draft protocol is available for general distribution Equilibrium occurs rapidly – within few minutes ✓ Time to equilibrium is not an issue Physical hardening is binder dependent as expected ✓ Can be significant/Binder dependent ✓ Need to develop test protocols that account for physical hardening ✓ If unaccounted for test variability may be unacceptable Depending on purpose of testing, physical hardening may be an issue.

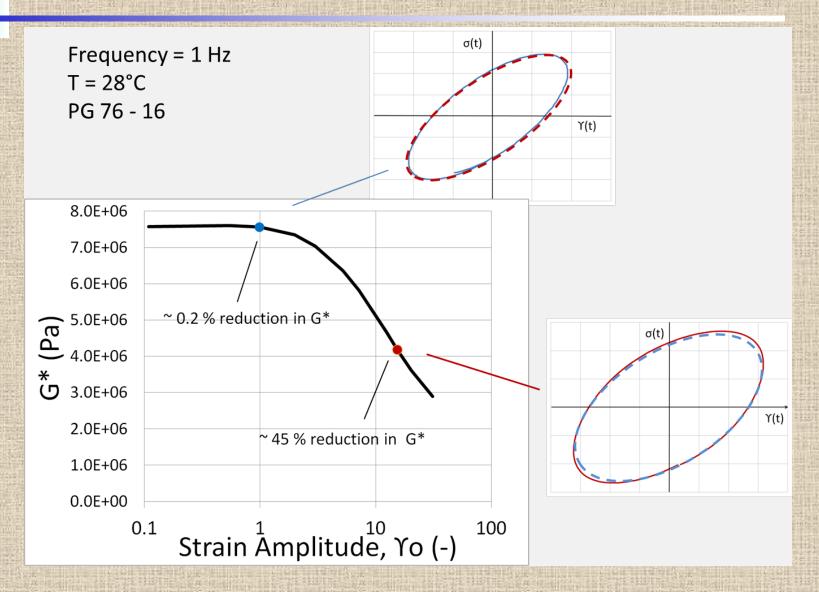
Slide -23-

#### 5. Issues Remaining


Specifying linear region ✓ Broader than first expected Testing sequence ✓ Increasing or decreasing temperature steps Increasing or decreasing frequency Consideration of physical hardening ✓ Test sequence? ✓ Data correction by extrapolation to zero time? Ruggedness testing Round robin testing ✓ Need supplier and user labs with proper training first!

Slide -24-

#### **Current Status**


□ All test data for main experiment is complete
 ✓ Data mining essentially complete
 □ Data have been organized into manageable database
 □ Data analysis underway

#### Example strain sweeps to show linearity

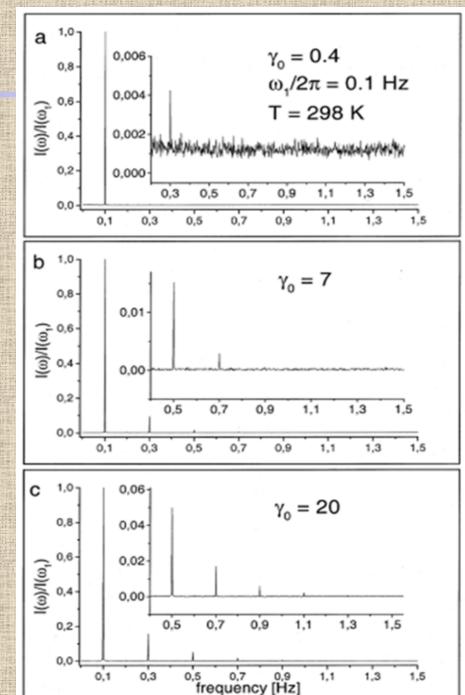


Slide -26-

#### Lissajous Figures for data integrity



Slide -27-


#### Harmonic Analysis

#### Manfred Wilhelm

✓ Analysis of harmonics
 ✓ Used ratio of 1<sup>st</sup> and 3<sup>rd</sup> to validate data integrity
 ✓ Patented analysis???

Wilhelm, M., Macromolecular Materials and Engineering 2002, 287, No. 2

Slide -28-



#### Status to date – some findings

Machine compliance protocols available Methods considered tentative until evaluated in ruggedness testing Two sample preparation protocols established ✓ Available on request 25 and 8 mm thermal equilibrium methodology is appropriate for 4 mm at low temperatures Specimen thermal equilibrium occurs rapidly Physical hardening present with both methods Both specimen preparation procedures produce acceptable test specimens

# What do we need for full implementation?

Recommended protocols for specimen preparation and determining specimen thermal equilibrium (Done) Protocol for determining machine compliance (TBD) Ruggedness testing program (TBD) ✓ Expect to include rheometers from 3 manufacturers Somewhat more robust than typical ruggedness program Training so that have sufficient labs for round robin (TBD) ✓ Needed before round robin to develop sufficient number of laboratories for robust round robin

Round robin (TBD)